08
Juli
2020

Gletscherrückgang in den Alpen – erstmals flächendeckend dokumentiert

Das Forschungsteam der FAU kombinierte Daten aus den drei Erdbeobachtungsmissionen TanDEM-X, SRTM und Landsat

Ein Forschungsteam der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) untersuchte die Flächen- und Höhenänderungen aller Gletscher der europäischen Alpen über einen Zeitraum von 14 Jahren. Dazu verglichen sie dreidimensionale Geländemodelle der deutschen Radarsatellitenmission TanDEM-X und der deutsch-amerikanischen Shuttle-Radar Topography Mission (SRTM) aus der Zeit zwischen 2000 und 2014. Die Höhenmodelle kombinierte das Team mit optischen Aufnahmen der Landsat-Satelliten der NASA. Das Ergebnis: Ungefähr 17 Prozent des gesamten Eisvolumens der Alpen gingen seit der Jahrtausendwende verloren. Die Erkenntnisse veröffentlichte das Team kürzlich in der Fachzeitschrift Nature Communications.

Credit: Christian Sommer
Gletscherspalten am Großen Aletsch. Credit: Christian Sommer

Ein Verlust an Eisvolumen von 17 Prozent entspricht mehr als 22 Kubikkilometern. Das ist größer als das Siebenfache des Wasservolumens des Starnberger Sees. Außer den höchsten Erhebungen der Zentralalpen erreicht die Eisschmelze bereits auch höher gelegene Gletscherregionen und die Tendenz setzt sich fort.

Die stärksten Verluste traten in den Gebirgsmassiven der Schweizer Alpen auf. Allein die großen Talgletscher der Berner Alpen verloren im Zeitraum von 2000 bis 2014 etwa 4,8 Gigatonnen Eismasse. Die Eisdicke ging im Durchschnitt um 0,72 Meter pro Jahr zurück. Das entspricht einem Volumen von knapp fünf Kubikkilometern. Lokal waren die Schmelzraten in den unteren Gletscherbereichen sogar um ein Vielfaches höher. Ein Beispiel stellte der größte Gletscher der Alpen auf, der Große Aletsch-Gletscher: Dort schrumpfte die Gletscheroberfläche nahe der Gletscherfront durch Abschmelzen jährlich um bis zu fünf Meter und mehr.

Zu diesen Ergebnissen kam das Team des FAU-Instituts für Geographie durch die Kombination der Daten aus den drei Erdbeobachtungsmissionen TanDEM-X, SRTM und Landsat. Entscheidender Vorteil des Verfahrens war, dass annähernd gleichzeitige Flächen- und Höhenmessungen verglichen werden konnten. Ähnliche Studien aus anderen Gebirgsregionen der Erde gehen in der Regel von einer konstanten vergletscherten Fläche während eines Beobachtungszeitraums aus. Besonders in hochdynamischen Gletscherregionen wie den europäischen Alpen kann dies zu einer deutlichen Unterschätzung der tatsächlichen Massenbilanz führen.

Abb.:Christian Sommer, Hintergrund: Landsat 8 & SRTM U.S. Geological Survey, www.usgs.go
Höhenänderung der Gletscher in den Schweizer Alpen. Credit: Abb.:Christian Sommer, Hintergrund: Landsat 8 & SRTM U.S. Geological Survey, www.usgs.go

Die Radarsatellitenmission TanDEM-X

Die Mission TanDEM-X wurde im Auftrag des Deutschen Zentrums für Luft- und Raumfahrt (DLR) mit Mitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) in öffentlich-privater Partnerschaft mit Airbus Defence and Space ins Leben gerufen. Das DLR ist verantwortlich für die wissenschaftliche Nutzung der TanDEM-X-Daten sowie für die Planung und Durchführung der Mission, die Steuerung der beiden Satelliten und die Erzeugung des digitalen Höhenmodells.

An der Mission TanDEM-X beteiligt sind das DLR-Institut für Hochfrequenztechnik und Radarsysteme als wissenschaftliche Leitung, das DLR-Institut für Methodik der Fernerkundung (IMF) und die DLR-Einrichtung Deutsches Fernerkundungsdatenzentrum (DFD) am Standort Oberpfaffenhofen. Zusammen decken sie alle relevanten Arbeitsfelder der Mission ab: Sensortechnik, Missionsauslegung, hochgenaue operationelle Prozessierung der Daten und Erstellung von für den Nutzerbedarf optimierten Produkten. Zusammen mit dem Deutschen Raumfahrtkontrollzentrum des DLR sind sie zudem für die Infrastruktur, die den Betrieb der Satelliten ermöglicht, das sogenannte Bodensegment, sowie für die Datenverarbeitung zuständig.

Einen Rückblick auf zehn Jahre TanDEM-X, den Ausblick für die mögliche Zukunft der Erdbeobachtung mit Radarsatelliten sowie Servicelinks zum TDX Science Server und Datenzugang für das – zur wissenschaftlichen Nutzung freie – 90-Meter-Höhenmodell die finden Sie hier.

 

 

Social Bookmarks

Wir benutzen Cookies
Cookies ermöglichen eine bestmögliche Bereitstellung unserer Dienste. Mit der Nutzung von GEObranchen.de und unseren Diensten erklären Sie sich damit einverstanden, dass wir Cookies verwenden.